Research Paper Interaction of the Macrolide Antibiotic Azithromycin with Lipid Bilayers: Effect on Membrane Organization, Fluidity, and Permeability

نویسندگان

  • A. Berquand
  • N. Fa
  • Y. F. Dufrêne
چکیده

Purpose. To investigate the effect of a macrolide antibiotic, azithromycin, on the molecular organization of DPPC:DOPC, DPPE:DOPC, SM:DOPC, and SM:Chol:DOPC lipid vesicles as well as the effect of azithromycin on membrane fluidity and permeability. Methods. The molecular organization of model membranes was characterized by atomic force microscopy (AFM), and the amount of azithromycin bound to lipid membranes was determined by equilibrium dialysis. The membrane fluidity and permeability were analyzed using fluorescence polarization studies and release of calcein-entrapped liposomes, respectively. Results. In situ AFM images revealed that azithromycin leads to the erosion and disappearance of DPPC and DPPE gel domains, whereas no effect was noted on SM and SM:cholesterol domains. Although azithromycin did not alter the permeability of DPPC:DOPC, DPPE:DOPC, SM:DOPC, and SM:Chol:DOPC lipid vesicles, it increased the fluidity at the hydrophilic/hydrophobic interface in DPPC:DOPC and DPPE:DOPC models. This effect may be responsible for the ability of azithromycin to erode the DPPC and DPPE gel domains, as observed by AFM. Conclusions. This study shows the interest of both AFM and biophysical methods to characterize the drug-membrane interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers.

Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, li...

متن کامل

Decrease of elastic moduli of DOPC bilayers induced by a macrolide antibiotic, azithromycin.

The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the macrolide antibiotic, azithromycin, leads to erosion of DPPC domains in a fluid DOPC matrix [A. Berquand, M. P. Mingeot-Leclercq, Y. F. Dufrene, Real-time imaging of drug-membrane interactions by...

متن کامل

Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane.

The aim of the present study was to elucidate the effect of the macrolide antibiotic azithromycin on Pseudomonas aeruginosa. We studied the susceptibility to azithromycin in P. aeruginosa PAO1 using a killing assay. PAO1 cells at the exponential growth phase were resistant to azithromycin. In contrast, PAO1 cells at the stationary growth phase were sensitive to azithromycin. The divalent cation...

متن کامل

Interaction of nanoparticles with lipid membranes: a multiscale perspective.

Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction ...

متن کامل

Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization.

Antibiotics acting on bacterial membranes are receiving increasing attention because of widespread resistance to agents acting on other targets and of potentially improved bactericidal effects. Oritavancin is a amphiphilic derivative of vancomycin showing fast and extensive killing activities against multi-resistant (including vancomycin insusceptible) Gram-positive organisms with no marked tox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004